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ABSTRACT

In the past, contagious distributions have been successfully
applied in Bacteriology, Entomology and Accident Statistics.
This thesis applies the notion of contagious distributions
in the inventory control of new products and seasonal or
style goods, which have an underlying '"true contagion" for
their demands, viz, the influence of past demands on future
occurrence of demands.

A contrgious distribution is derived by assuming a modified
Poisicon process where the demand rate at any instant of time
depends on the past demands prior to that instant. A
discussion on estimation of the various parameters of the
contagious distribution is also included. Using this
contagious distribution, a multi-period inventory model is
discussed for new product lines with a "fixed periodic
review policy." An optimal s - S order policy is derived
as a function of the initial stock level and the review
period. Seasonal or style goods are treated as single-
period inventory problems with contagious demands. An
algorithm is developed to compute the optimal order policy
and the optimal length of the period.
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INTRODUCTION

In literature, successful applications of contagious distributions are
found in Bacteriology, Entomology and Accident Statistics. In this thesis,
an attempt has been made to apply the notion of contagious distributions in
the inventory control of consumer products which have an underlying 'true
contagion” for their demands, particularly when the product is new or is a
seasonal or style good. 'True contagion" means the probability of a favor-
able event depends on the occurrence of previous favorable events. Thus,
unlike the classical Poisson demand, the contagious demand in two nonover-
lapping time intervals are dependent as occurrence of a demand influcnces
further occurrence of future demands.

Chapter 1 discusses a "contagious" demand model for an inventory system.
Starting with literature review on contagious distributions, the various
applications of our contagious demand model are discussed. It is to be noted
that the contagious behavior is only transient and once the product
stabilizes in the market, the contagion effect vanishes. By assuming a
modified Poisson process where the demand rate at any instant of time depends
on the number of past demands, the contagious demand distribution is derived.
Since the life of new product lines are longer, compared to seasonal goods
like clothings, both commodities are treated separately. Seasonal goods are
considered as single period inventory problems as the period is small while
new product lines are considered as multi-period inventory problems composed
of a number of single periods. The contagious demand distributions for
succeeding periods for new product lines are also derived.

Chapter 2 discusses the case of new product lines exclusively., Here, a
fixed periodic review policy is followed after fixing the review periods |
institutionally and solving the multi-period problem by successively solving

a single period problem, knowing the review period. An s - S policy is




derived as an optimal order policy in this case. An olgorithm to compute the
optimal order levcl for a given review period is also developed., The optimal
ordering policy as a function of the length of the review period is also
plotted.

Chapter 3 exclusively discusses the seasonal or style goods which are
considercd as single period inventory problems. Besides a fixed per{od-
length policy, an optimal period-length policy is also discussed. For the
latter case, an algorithm to compute the optimal review period is developed
after computing the optimal order level for a given review period. To the
author's knowledge, this is the first time an optimization over review period
is successfully carried out for an inventory policy under stochastic demand.

Chapter 4 discusses two methods of statistical estimation of the param-
eters of the contagious demand distribution., Here it is also shown that the
maximum likelihood estimator is asymptotically unbiassed and efficient.

Appendices on solution of ordinary differential equations, properties of
Beta and Gamma functions which appear in our analysis are also included as

reference.
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CHAPTER 1

A "CONTAGIOUS" DEMAND MODEL

1,1 Literature Review on Contagious Distributions

In a recently published volume [10], of considerable interest, coveringy
ﬁ the Proceedings of the International Symposium on Classical and Contagious
Discrete Distributions, we observe the successful applications of the

notion of contagious distributions, particularly to biological populations,
{ accident statistics, contagious diseases, and psychological data. Actually,

the interest on contagious distributions dates back to 1920 when Greenwood

and Yule [6] developed a very general scheme for contagious events where

the occurrence of each event increases (or decreases) the probability of

R —

further events. But due to the very generality of their model, their
formulas become too complex for practical applications.

J. Neyman [9] developed and applied successfully three types of
contagious distributions in Entomology for distribution of larvae in
experimental plots and bacteriology. In a follow up paper by W, Feller (5],
it was pointed out that there are two kinds of contagion as 'true contagion"
and "apparent contagion' and Neyman's [9] contagious distributions are of

the latter type.

Apparent contagion is the result of inhomogeneity arising from
distributions on the parameters involved in a population., Thus, the
compound Poisson distribution is an example of apparent contagion as

developed by Greenwood and Yule [6] and applied successfully in accident

proneness.

In the case of true contagion, the probability of a "favorable'" event
depends on the occurrence of previous favorable events. Ironically enough,

assuming true contagion, Eggenberger and Polya [3] arrived at the same




distribution as obtained by Greenwood and Yule [6}. The Greenwood-Yule-
Polya-Eggenberger distribution, which is a negative binomial distribution,
has found many applications in contagious diseases, sickness and accident
statistics. GCurland [7) discusses a survey of the applications of the
negative binomial and other contagious distributions with special reference

to some medical data.

1.2 Occurrence of Contagion-Demand in Practice

So far in the literature on contagious distributions, no attempt has
been made to apply the notion of contagious distributions in the inventory
control of consumer products which have an underlying true contagion for
their demands, particularly when the product is new or is a "style" good
(which changes its style periodically). The classical demand distribution
used in inventory control, like the Poisson distribution, will not reflect
the Lrue behavior of the contagious demand, It is well knownthat the simple
Poisson distribution describes mutually independent events; in other words,
with a Poisson distribution the number of events in two nonoverlapping time
intervals are uncorrelated and the occurrence of an event has no influence
on the probability of occurrence of further events.

If we study the demand for the new products and "style' goods, we will
note that besides the constant demand for the products (which is mainly due
to advertisement), a contagious demand also occurs due to the customers who
have used the product and recommended it to their friends or to other
sources of consumer awareness. So until the new product is stabilized in
the market, there is a "contagious" demand during the initial or "transient"
stage, besides the constant demand. Unlike Poisson demand, the contagious
demand in two nonoverlapping time intervals are dependent as occurrence of a

demand influences further occurrence of future demands. Given that a demand
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has occurred for a new product fronm a particular area, we expect to find
more demands to come from the same area due to the influence of the past
occurred demand., In other words, our demand model has the underlying
assumption that past demands have an influence on the occurrence of future

demands.,

1.3 Applications of Contagion-Demand

A number of examples of products can be thought of, which will follow
a contagious law for their demand. For example, acquiring a Princess
telephone in your home will tempt your neighbor to do the same. Other
examples may be, demands for new cereals, new freeze-dried coffee, new books,
cars (style goods), Christmas trees and practically all consumer products in
daily use. The notion of contagion can even be extended to nonconsumer
products whicli exhibit a contagion pattern like research reports. In other
words, a research organization can do a better control of their inventory of
reports assuming a contagious demand distribution for their reports. Also,
the sequence of published research papers in a particular subject, will tend
to follow a contagious law. This should be so as readers after seeing a
research paper tend to work more in the same area which results in more
papers. This may be useful to a librarian or publisher of a technical
journal, Another classical application is the efficient usage of hospital

beds for patients with contagious disease.

1.4 A Contagious Demand Model

The demand model assumes that every occurrence of demand produces one
unit of demand implying the demand has a discrete probability distribution,
It was discussed in Sections(l.2) and (1.3) how the contagious demand arises

in practice and its various applications. To incorporate this idea in our




demand model, we follow Cox and Miller [1] by assuming a constant demand

rate and superimposcd on that a unit contagious demand rate to reflect the
influence of each past demand. So at any point in time "t," the total
contagious demand rate will be equal to the unit contagious demand rate
times the past demands before '"t." So the rate at which demand will occur
at any time "t," will be the sum of constant demand rate and the total
contagious demand rate. Thus, we also introduce, explicitly, time as a
parameter in our demand model, Though, the final contagious demand
distribution, like many other contagious distributions, is negative binomial
in some sense, a derivation of the distribution will be carried out in the
analysis to follow, to introduce "time" explicitly since "time'" never appears
as an explicit parameter in classical negative binomial distributions. (The
reader is referred to Feller [4] for a discussion on classical negative
binomial distribution.)

Some caution must be applied as to the duration and magnitude of
contagious demand. One cannot expect the same amount of contagious demand
throughout the life of a product. As a matter of fact, the contagious demand
will be very high when the product has just been introduced in the market and
will follow a decay law such that its effect vanishes after a time the
product is stabilized in the market. So the unit contagion rate, which
reflects the increase in the constant demand rate, is a decreasing function

of time.

l.5 Periodic Review Policy

There are two types of phenomenal situations that arise in practice.
One is the consideration of new product lines like new cereals, while the
other is the consideration of seasonal or style goods like automobiles and

clothes., If we assume that the contagion rate varies at each instant of




time, this will complicate our analysis and results considerably. So, a
simplifying approximation is made about the contagion rate for the two class
of goods which exhibit a true contagion for their demand.

Most of the seasonal or style goods change annually or semi-annually.

So the length of time they remain in market is much smaller compared to

that of new product lines. Hence, an approximation is made by using an
(average) constant contagion rate throughout the season. This may be valid
if the season is small relative to the variation of the contagion rate or if
the contagion rate is changing very slowly,

In the case of new products which will be in the market for a
considerable length of time, the contagion rate is approximated as a step
function with breaks at regular intervals of time identified as the length
of the review period T . Choice of T 1is made institutionally by observing
how rapidly the contagion rate is changing. The inventory system is
reviewed periodically and at the end of every review period, a decision is
made about the best stock up level for the succeeding period depending on the
present inventory level, i.e., a Periodic Review Policy is employed. The
unit contagion rate is not assumed to be the same from one period to another.
Generally, the contagion rate will be less in each succeeding period and the
successive new value at the end of every review period is estimated by the
knowledge of the past realizations of demand. Under this assumption, the
unit contagion rate at time t , denoted by a(t) , looks as follows under a

particular realization.
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In the above illustration, the product has three review periods during its |

transient stage, viz, Tl 5 T2 and T3 . At the end of time

T, + T, + T the product is stabilized in the market and the contagion

1 2 3

effect vanishes.

1.6 Assumptions and Notations

Without loss of generality, the beginning of each period is taken as E
time zero. For the present, we will confine ourselves to seasonal goods or

to the first review period of new product lines, where at time zero the

demand 1is zero.+

+This is not true for succeeding periods of new product lines as the demands
in the previous periods will influence the demand distribution in the
succeeding periods. Though this does not complicate our analysis too much
(luckily!), we postpone its discussion to Section 1l.9.




Let A > 0 denote the initial constant demand rate component. The
unit contagious demand rate is denoted by a > 0 . In other words, o is
the increase in demand rate for each past demand. N(t) denotes the number
of demands in an interval ([0,t] of length t . The probability of n
demands in [0,t] is denoted by Pn(t) . Let T denote the length of the
review period.

Denoting by h , the length of a very small interval, we make the

following assumptions:

Probabilities of positive demand occurrence in the interval

(t,t + h) given r previous demands in (0,t) satisfy:

(1.1) P{N(t + h) - N(t) = 1/N(t) = r} = (A + ar)h + o(h) where r = 0,1,2, ...

lim ofh) =0

and o(h) denotes higher order terms in h such that b .
h~0
(1.2) P{N(t + h) - N(t) > 2/N(t) = r} = o(h) .
(1.3) P{N(t + h) - N(t) = O/N(t) = r} =1~ (A +ar)h + o(h) .
1.7 The Contagious Probability Distribution for Demand
h
S ua——
L 1 | !
L 1 ] I |
t t+h T
FIGURE 1.2

In the above illustration of the review period [0,T] , consider an
ingtant of time t ¢ [0,T] . Assume the interval ([t,t + h]) of length h
satisfies the Properties (1.1), (1.2) and (1.3). Hence, we can write the

following expression for the probability Pn(t + h) in terms of
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probabilities at time t for n = 0,1,2, ... .

For n=0:

Po(t + h) = Po(t)[l - Ah + o(h)] .
Taking Po(t) to the left and dividing by h , this reduces to

Po(t + h) - Po(t)
h

o o(h)
xPo(t) + ho

Taking the limit as h tends to 0 , we get

' B -
Po(t) APo(t) c
Integrating both sides and using the initial condition PO(O) =1, we get

P (t) = sl

Similarly, for all n > 1

no demand in (t,t + h)]

"
o]
]
=3
o

Pn(t + h) = Prob [N(t)

+ Prob [N(t) = n - 1 and one demand in (t,t + h)]

L}
=}

L}
=~

+ Prob [N(t) and k(3> 2) demands in (t,t + h)] .

Writing down the corresponding probabilities and using 1.1, 1.2 and

1.3, we get

Pn(t + h) = Pn(t)[l - (A + an)h]

(1.4)
+ Pn_l(t)[k + a(n - 1)]h + o(h) .

Taking Pn(t) to the left and dividing by h , (1.4) reduces to




Pn(t + h) - Pn(t)
h

= -(x + an)Pn(t) + (A + aln - 1)]Pn_1(:) + 2%?1 i}

Taking the limit of both sides as h tends to 0 , we get

(1.5) P;(t) = -(\ + an)Pn(t) + [A 4+ a(n ~ 1)]Pn_1(t) J
Define:
A
P_l(t) =0 for all t > 0
(1.6) PO(O) =1
Pn(O) = 0 for all n > 0 .

The solution of the above differential Equation (1.5) is

P () = & M 4o - 1)) f Mt (nar

(2e7)

+ ce-(x+na)t

The general solution holds for all values of n=1,2, ... and the
constant of integration ¢ can be evaluated using the initial conditions

given in (1.6). It has already been derived that
Po(t) = Prob. of no demand in (0,t)

-At

Solving (1.7) for n = 1, we get

< A -At (o)t
Pl(t) S e + ce .

As t -0, Pl(t) + 0 which gives ¢ = -\/a . Hence, we get the

probability of one demand in (0,t) as

11
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A -t _ oot
Pl(t) =5 e (1 -e ]

Similarly, by substituting n=2 and n = 3 , and solving for

(1.6), we get the following probability expressions:

Pz(t) - A(A +2a) e—kt[l _ e—at]Z
20

and

AL + a)(g + 2a) e-ktll _ e—at]3
3la

P3(t) =

Extending the results to n , W€ get

AL+ o) .0 (2 F (n - o] e-kt[l _ e-at]n

P (t) =
n( ‘ n!un

Taking the factor a out from each term, we get

¢ using

1.8) B_(6) = o ° 2. (§-+ 1) e (§-+ (n - 1))e'“t[1 s o

a

Define

e >

= p (a constant). Since A and o are positive, © is

also positive. But, ¢ need not necessarily be an integer. Using the

substitution A/a = p , we can rewrite (1.8) as

Pn(t) = n.

Using the well-kr 1 gamma notation, we can write

- T(p + n) -at\p ~at,n

I'(p + n)

(o +n-1+n- 22 ee (g + ) +1)o (e-at)o(l _

To simplify the writing, we will henceforth denote To)rn + 1)

n

) .

-t
e

as




e
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(p i 1) . Note:
n
(n+ 1) =nl(n) ; ICs) = /71 .
Thus, the contagious distribution becomes:
(1.10) P_(t) = (° + : - 1)(e‘“t)p(l - eH™  for all n=0,1,2, ...

Equation (1.10) can also be interpreted in some sense as a negative binomial
distribution by suppressing time. Then Pn(t) will be the probability that
exactly n failures precede the pth success, if p 1is an integer where
prob. of success is given by p = e_mt > 0 and prob. of failure

=q=1- e“("t >0 forall t>0,a>0. Hence, Pn(t) can be rewritten

as
(1.11) P (t) = (° + 2 B l)ppqn - for all n = 0,1,2, ...

Note: The Equations (1.10) and (1.11) hold for n = 0 also, as from
(1.9),

Following Feller [4], we can rewrite the binomial coefficients and using the

fact for any a > 0

() - (i)

we get

(1.12) P (t) = (";)p%-q)“




-0y, n '(p + n)
(n) A R

Tables of the negative binomial distribution are available in [14]. Also,
Taylor [13] shows an important mathematical equality in his paper that the
infinite sum of negative binomial terms can be expresscd as a finite sum of
(positive) binomial terms., Hence, the latter's table can be used to find
the former,

Feller [4] has also shown that Equations (1.11) and (1.12) represent
" an honest probability distribution, Hence, for a fixed "t," (1.10) also
represents an honest probability distribution,

By definition the generating function of Pn(t) , denoted by Gt(Z) o

will be, G_(2) = ] 2"P_(t) . It can be easily verified that
n=0

)
(1.13) Gt(Z) = (I—flaz) where p = e-at yqg=1-e B 3

1.8 Central Moments of the Contagious Distribution

Using the moment generating function, the mean or expectation of demand,

for fixed t , will be, by definition

GGt(Z)

RS S

=]

Using (1.13),
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Hence,
{
-at
(1.14) m(t) -%‘“P—(—l——:a—:—l.
e

Similarly, taking the second derivative of (1.13) with respect to Z and

taking the limit as 2 » 1 , we get

- 2
] n(-1p (r) = &otla
n=0 P

By definition, the variance is given by

vy = I o’ () - m()]? .

n=0 .
Hence,
: pq _o(l - e—atz
(1.15) V(t) - p2 = _zat .

1.9 Demand Distribution in Second and Succeeding Periods

As pointed out in Section 1.6 in the case of new product lines, the
analysis for first period and succeeding periods differ mainly because of
the influence of first period demands on the second and succeeding periods,
due to the contagious effect. Luckily enough, the analysis is not com-
plicated too much, and we get the same form of the contagious distribution
as derived for the first period, except for a change in parameter depending ]
on the number of demands in the previous periods. The reader will

immediately notice that the analysis for the second period will follow

identically to third and succeeding periods. The demand distribution for

the second period is derived assuming the number of demands in the first
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period to be Nl and the new estimated value of the contagious factor be

o Once again the beginning of the review period will be denoted as zero.

9 *
Referring to Figure 1.2, probability of a demand in the interval

(t,t + h) given r demands in (0,t) will be

(1.16) P{N(L + h) - N(t) = 1/N(t) =r} = (A + a2N1 + azr)h + o(h) .

Since we know ay and N, , we know the product ale which is a "constant"

demand rate and can be added the other constant demand rate X . Let

AZ = )+ a2Nl q

Hence, (1.16) reduces to

(1.17) P{N(t + h) - N(t) = 1/N(t) = r} = (kz + azr)h + o(h)

once again
(1.18) P{N(t + h) - N(t) 2 2/N(t) = r} = o(h)
and

(1.19) P{N(t + h) - N(t) = O/N(t) = r} =1 - (Az + azr)h + othy) «

Immediately, we notice that the simple substitution xz =)\ + Nlaz , has
reduced the Equations (1.17), (1.18) and (1.19) identical to (1.1), (1.2)
and (1.3). Hence, we will get the same differential Equation (1.5) except

that A will be replaced by Az » which will lead to identical solution for
A

P (t) . Denoting s 0, 5 we get

n @, 2

o)

2 n
r(p, + n) -a.t -a,t
D0« sy () -7 :
(1.20) Pn (e) = F(oZ)F(n T \e l-e for all n = 0,1,2, ...
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Note that we can extend these results to any succeeding period. For

example, let « denote the unit contagion rate for the Nth period. Then

N-1
= )\ + 121 Ni“N where N

We can define PN similarly as PN =

is the number of demands in the ith period.
A

AN i

, and we will have

2 |

) I‘(pN + n) ( —aNt)oN( -aNt)n
Pn (t) = F(DN)F(n T e l-e for all n = 0,1,2, ...

Thus, we notice that the probability distribution for demands in any
review period depends on the number of demands that occurred in previous
periods. It is interesting to note how the central moments vary. We shall
confine ourselves to the second period as the results are identical for

succeeding periods.

mz(t) = mean number of demands in 2nd period

-0,
2
_"z(l‘e )

-azt
e

Since Py increases linearly as the number of demands in the first period

(N increases, we see that mz(t) + Nl , and so does, Vz(t) , the variance,

17

as

1,10 Limiting Distribution

Since it is postulated that the contagion rates A sdgy ee. are strictly
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decreasing, it will be important to know the limiting form of the contagious
distribution as the contagious effect vanishes, It turns out the limiting

distribution is Poisson.

Theorem l.1:

The limiting distribution of Pn(t) , given by Equation (1.10), tends

to a Poisson law, as o =~ 0 .

Proof:

To prove that Poisson is the limiting form of Pn(t) , we follow
Feller's [4] approach, using the generating function. From (1.13), the

generating function of Pn(t) is given by

Y
- Pl
GL(Z) (l - qZ)

where

p = Ao .

As a +0 ;3 p+o,p=+1 and q~> 0 ; let pq - At (fixed). Taking the

limit of Gt(Z) as a >0, we get

p
lim G (2) = lim [—}——:—i;—i‘;—] = lim F(»)
a0 Py ° [

where

1-2t/o |°
F(p) = [————-—-—l - )\ZC/Q] 2
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Taking logarithms of both sides, we get

lim log, F(p) = lim [1°g (s “/P)l;plog (1 - AZtLQ)] .

pe pr
Applying L'Hospital's Rule, we get

1lim log F(p) = -At + AZt .

p®

Hence, the limiting value of the generating function as o + 0 = e-Xt(l-Z)

which is nothing but the generating function of a Poisson distribution.

Hence, as

By our assumption, in a multi-period model, the éontagion rates are
strictly decreasing with each period and tends to zero after a finite number
of periods.

Hence, increases with N and tends to +~ in a finite period.

°N
From the proof of Theorem 1.1, it can be observed that PiN)(t) tends to a

Poisson distribution after a finite number of periods.

1.11 The Inventory System

In Section 1.5, it was shown that an approximation is made about the
contagion rate by following a periodic review policy, i.e., reviews of the
inventory system at stated intervals of time and depending on the inventory
level realized at the beginning of each interval, the best ordering policy
is chosen for the succeeding period. Thus, the periodic review policy leadé

to a multi-period inventory problem. Because of the computational difficulty
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of not having an explicit expression for the estimates+ of the contagion
factor, the problem cannot be treated as a multi-period problem but only as
successive single period problems. At the beginning of each interval, using
the past realization of demand, the new value of the contagion factor is
estimated which gives the contagious demand distribution for that interval,

So far, nothing has been assumed about the stated intervals of time.
There are number of ways to determine these intervals of time. One way is
to fix this review period institutionally either by the knowledge of past
experience or arbitrarily. In this case, the review periods may be of
increasing length in the order of the period, to facilitate looking at the
system more often during the initial periods, which one might normally do
since the "learning" about the demand behavior is limited during the initial
periods. This type is a fixed periodic review policy. Chapter 2 essentially
discusses an optimal order level for a fixed periodic review policy for a
single period problem,

Again, it was shown in Section 1.5 that for the case of seasonal or
style goods, we only have a single period to consider. To determine this
length of the review period T , one may follow the fixed period-length
policy by choosing T by past experience or arbitrarily. Another way would
be to seek the "best" review period to choose. This ieads to an
optimization problem with two variables, namely, an order level and a review
period. This type is an optimal period-length policy, which can be solved
as a ''two-stage optimization' problem. The optimization proceeds by first
finding the optimal order policy as a function of the length of the review
period and then selecting an optimal review period. By considering the

optimization in two stages, an optimal solution for a fixed period-length

+
"Chapter &4 discusscs the estimation procedures for the parameters of the
contagious distribution.
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policy is also given., This is discussed in Chapter 3. This is the first
time, to the author's knowledge, an attempt has been made successfully to
find an optimal review period for an inventory policy under stochastic
demand. For a deterministic demand, we have the classical result in the
Wilson-Harris+ lot size formula.

Two situations arise in an inventory system from demands which occur

when the inventory is zero:

(1) The demand is backordered and supplied at the start of the next
period, i.e., backorders are filled.

(ii) The demand is not filled, i.e., it is lost.

Both the above mentioned situations can arise for seasonal goods as

well as new product lines

1.12 Costs Associated with the Inventory System

Three types of costs are considered: (1) procurement costs,
(ii) inventory holding cost, and (iii) stock-out costs,

One may observe in inventory literature that the cost function is
assumed convex without specifically giving the expression for it. Instead,
in this thesis, each of the costs are purposely discussed and an acceptable
parametric form is given. In practice, this facilitates computing these
costs more easily as one has to only compute the various parameters. Also,
this gives an opportunity to make a parametric study of the optimal solution
and see how sensitive is the optimal solution with respect to the various

cost parameters.

A detailed discussion of Wilson-Harris lot size formula can be found in

Hadley [8].




1,13 Procurement Costs

We shall begin by examining the procurements costs, which can be
divided into two parts. First, there is the cost of the goods itself which
is paid to source of production. Then there is the costs incurred by the ‘
inventory system itself in making a procurement. These may include costs
associated with ordering, bookkeeping, transporting, inspection, testing and
so on. These themselves fall into two classes, one which depends on the
amount ordered and the other independent of the amount ordered. Including
the cost of the goods itself in the first classification, we can denote the
procurement costs as the sum of two costs; one, which depends on the amount
ordered, denoted by c/unit ordered, and, the other, independent of the amount
ordered, denoted by k , called the set-up cost. Hence, the total cost of

placing an order for Q wunits will then be k + ¢cQ .

1l.14 Inventory Holdiug Costs

The next important cost to consider is the inventory holding cost.
Included in these are the real out of pocket costs such as cost of insurance,
taxes, breakage and pilferage at storage site, warehouse rental and costs of
operating the warechouse. But, the most important cost is not the direct out
of pocket cost but an "opportunity cost" which is the cost incurred by
having the capital tied up in inventory rather than having it invested else-
where, and it is equal to the largest rate of return which the system could
obtain from alternate investments. So, we shall assume that the
instantaneous rate at which inventory carrying charges are incurred are
proportional to the investment in inventory at that point in time. Let, I ,
denote the holding cost in $/unit time/$ invested in inventory. According
to Hadley [8], the reasonable real world values for I range from something

like 0.15 to 0.35.
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1.15 Stock-0ut Cost

Back-order costs are difficult to measure since they can include such
factors as loss of customers' goodwill (i.e., in the future, he may take his
business elsewhere). Two types of back order cost for our inventory system

are considered:

(1) A back order or shortage cost depending only on the amount
backordered. Denote this by p/unit backordered. This may include
the cost of notifying the customer, bookkeeping of the amount of
back orders and so on.

(ii) A variable cost depending on the length of time for which an
order remains unfilled, e.g., a machine shop where lack of parts
keeps the machine idle., Denote this by ;/unit short/unit time in

back order.

1.16 Selection of an Operating Order Policy

The purpose of this chapter is to find an "optimal" ordering policy with
the help of a mathematical model of the inventory system. So far, the term
"optimal" has been used loosely. By an "optimal" policy we mean, the
ordering policy that maximizes the net profit or minimizes the total costs.
In some situations, like the ones we are interested, viz, production of
consumer products, one would like to maximize one's net profit. In some
other situations, where the profits are always negative (e.g., post office),
one may like to minimize the cost. In some cases, both these consideraticns
may arrive at the same orcering policy. One should remember that the net
profit or total costs need not be equivalent to a strict accounting profit
or cost, since for purposes of computing optimal ordering policy it is only
necessary to include those costs which vary with the onerating policy. Costs

which are independent of the operating doctrine, like the cost or operating




the information processing system (which includes the cost of making an
actual inventory count, use of compuéer or the cost of making demand
predictions), need not be included. There is another reason why the profit
or cost will differ from what would be computed from accounting records.
This is because the stock-out costs include components which are not out of

pocket costs, like the opportunity costs.
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CHAPTER 2

SINGLE PERIOD OPTIMAL ORDER POLICY

2.1 Feed Back Control Policy

It was shown in Chapter 1 that the multi-period inventory problem for
the case of new product lines 1is solved by considering it as successive
single period problems. Thus, this chapter will be devoted exclusively for
finding an optimal order level for a single period problem under a fixed
periodic review policy where the demand for the new products follow a conta-
gious law. Because of the fixed periodic review policy, the review periods
are chosen by the knowledge of past experience or arbitrarily.

As discussed earlier, the inventory model calls for new estimated
values of the parameters of the demand distribution after every review period,
Hence, it is assumed that the values of the constant demand rate (A) , the
unit contagion rate (a) , the number of demands in the previous periods
(Z Ni) and finally, the review period (T) are known. This will completely
specify the contagious distribution, given by Equation (1.10).

Since a single period problem is being solved at the end of any review
period, the past experience of the demands in the previous periods is used
for the succeeding periods. Thus, an efficient feed-back control policy may
be determined as information is constantly fed back into the inventory
system and this feed back is used in determining the ordering policy
successively. There is also a '"learning process" associated with the

operation of the inventory system.

2.2 Notations

We shall review all our notations and symbols used so far and introduce

a few more in this section.
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x = initial inventory level before reordering goods.

y - starting inventory level after rcordering. (Hence, (y - x) 1is the
amount ordered.)

T - review period.

N - amount demanded during the review period [0,T] .

Note that N is an integer valued random variable having a contagious

probability distribution

P (T) = (" - 1)5"6“ for all n = 0,1,2, ...
n n
where
‘ n F()r(n + 1)
(i1) E = e-aT . S 20, q >0 and E + a =1. a 1is the unit contagion

rate for the current period under consideration. (a > 0)

(iii) Pn(T) is the probability of .n demands in [O,T]

(iv) p =21"'"/a and X' =X + N'a . Where X is the constant demard rate
for the curreut period and N' is the total number of demands in
the previous periods. Note for the first period A' = X since

N' = 0.

n(T) - mean number of demands in the current period. Note m(T) = oq/p .
k - set up cost. (k> 0)
c - cost/unit purchased. (¢ > 0)

I - inventory holding cost per unit time per $ invested in inventory.

h = Ic - inventory holding cost per unit time per unit held in inventory.
(b > 0)
p - shortage cost/unit short. (p 2 0)

-~

p - shortage cost/unit short/unit time. (p > 0)
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r - gross revenue/unit sold. (r > 0)

2.3 Assumptions

A-L:

No disposal of goods is allowed at the end of the period. In other
words, at the end of every period we either order for more to increase the
inventory level (> y > x) or order nothing and stay at the same initial

inventory level x(> y = x) . Hence, vy > x always.

A-TI1:

The expected net revenue from unfilled orders are not included in the
current period. Since the back orders are supplied only at the beginning
of next period, the revenue from filling the back orders is included in the
next period for convenience. This assumption is not correct if the current
period is the last period since there is no succeeding period. This will be
discussed in a later chapter. (Refer to Section 3.8.) |

By Assumption A-I, we have to consider only two cases:

VEA

Case (1) x=20,y20,y2x

A

Case (ii) x 0, y<0,y>x.

The relevant costs in these two cases are discussed using Figures 2.1

and 2.2 for Case (i) and Case (ii) respectively.

2.4 Expected Gross Revenue Function

By Assumption A-II, the expected revenue corresponds to goods sold in

the current period only.
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Case (i):

Referring to Figure 2.1, there is no revenue from filling last period's
back order if x 1s nonnegative, while the revenue is -rx if x is
negative. Hence, the revenue from filling back orders is written as
-r min (x,0) where x represents the algebraic value of the initial
inventory level (x E 0) . Similarly, the revenue from demands in the
current period (Figure 2.1) is r times the number of demands for realiza-

tions (a) and (b) and is ry for (c). Hence, in general, the revenue from

- -]
current demand is r % nP (T) +r ) yP (T) . Thus, the total expected
n n
n=0 n=y+1

gross revenue is -r min (x,0) + r % nP (T) +r ) yP (T) . By
n n
n=0 n=y+l
changing the summation, this expression becomes -r min (x,0) + rm(T)
[ J
-r ] (n=-yPp ().
n=y+1

Case (ii):

Referring to Figure 2.2 and Assumption A-II, the gross revenue is

r(y-x) . (Note: x <0 and y < 0 .)

2.5 Procurement Cost Function

As stated in Section 1,13, this includes a set-up cost and the cost of
purchasing the goods. This cost is the same for both Cases (i) and (ii).
Since the set-up cost 1is positive only if an order is made, a delta function
is introduced to take care of the case when no order is made (i.e.,

y = x) . Hence, the set-up cost = k§(y - x) where

8(y-x)=1 1if y > x

= 0 otherwise.
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The cost of goods purchased is e¢(y - x) . Hence, the procurcment cost is

ké(y - x) + c(y - x) .

2.6 Expected Inventory Helding Cost

:

Case (i):

An inventory holding cost is incurred as long as there is a positive
inventory level and there is an instantancous holding cost with respect to
the inventory level at that instant, Considering aun instant '"t" ¢ [0,T]

the inventory holding cost in the interval ([t,t + dt] will be

g (y - n)Pn(t)dL , and integrating over the entire interval [C,T] , the
n=0

expected inventory holding cost for the entire period is

T
v-m [ e
h y = n P (t)dt .
n=0 ‘I E
0
1
Now, the integral j. Pn(t)dt
0
il
[(c + n) -at,o _ J-otyn
fr(c)r(n+1) GRS R S
0
By chunge of variables, with the suhstitution u =1 - e_OLt P
T q
T(o + n) o-1 n du
D V4 = - ——
f’n(‘)“t _/I'(D)F(n+l) (L-w" u gy
0 0

where




The integrand is an Incomplete Beta Function Ratio (properties of incomplete
Beta functions are given in Appendix II). By definition, a Beta function

with parameters (m,n) 1s given by

1
B(m,n) = f um-l(l - u)n_ldu = % "
0

and the incomplete Beta function with parameters x ,m and n is given by

x
Bx(m,n) = f um-l(l - u)n-ldu for x <1 .
0
Define
Bx(m,n)
-———B(m,n) = Ix(m,n) <1 for x <1

where Ix(m,n) denotes the incomplete Beta function ratio.f Hence,

T I_(n + 1’9)
T R —
(2.1) f P {(B)dt = ==
o
I(n+1,0)
and the expected inventory holding cost is = § (y - n) <4
a a=0 p+n

Case (ii):

It is immediate that the inventory holding cost in this case (Figure 2.2)

is zero, as there is only a negative inventory level throughcout the period.

+Pearson [11] has tabulated the values of incomplete Beta functions for
various parameters.
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2.7 Expected Shortage Costs

As stated earlier, there are two kinds of shortage costs, one which
depends on the amount of shortage and the other depending on the
instantaneous shortage level. Again, Cases (i) and (ii) are discussed

separately.

Case (i): (Figure 2.1)

The expected shortage cost associated with parameter "p'" is nothing

but the expected shortage level at the end of the period times the cost
per unit short (p) . By computing the instantaneous shortage cost in a

fashion similar to that for holding cost, the total expected shortage cost

is
- 2 . I (n+ 1,0)
p ) (n=-y)P (T) + B ) (n-y) 4
n=y+l n ¢ n=y+1 el
Case (ii):

Referring to Figure (2.2), the total expected shortage cost is
T

-py + pn(T) - pyT + p f m(t)dt
0

which reduces to

(p + p/a)m(T) - poT - (p + pD)y ,
using the fact

-at
p(l - e

-at
e

-at

m(t) = = pfle - 1]




2.8 Expected Net Revenue Function

The expected net revenue function for a given review period T with
parameter y 1is denoted by n(y,T) . The expressions for n(y,T) for

Cases (i) and (ii) given separately are:

Case (i):
<
y20, x =0, y2x
7(y,T) = rm(T) - r min (x,0) + cx - ké(y - x)
I (n+1,p)
S Al - Q. B
[%y + nzo (y - n) 5 5w
(2.2)

+G+r) [ (n-yP (D

n=y+l
- I (n+1,p)
+pla )} (n-y) 'iL-jrj;—-— .
n=y+1 g

Pn(T) and I_ can be computed from the tables available in [14] and [11]

q
respectively,

Case (ii):

y<0,x<0,y2>x

(2.3) n(y,T) = -rx + cx - ké(y - x)

- [m(T)(p + ;/G) - ;DT - (p + ;T +4r-~-c)yl

It can be easily verified that the followving general expression for

both Cases (i) and (ii) holds. In general, ,r all vy % 0, x % 0,y2x

(y,T) = rm(T) - r min (x,0) + cx
(2.4)
- [k8(y - x) + G(y,T)]

33
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where
G(y,T) = cy + (p + 1) Z [n - min (y,n)]Pn(T)
n=0
- I (n+ 1,0)
h
(2.5) = nZO [max (y,n) - n] —q*p—Tn———
2 I (n+ 1,0)
+ p/a z [n - min (y,n)] e
n=0 RRRE

2.9 Properties of the Cost Function

The optimal order level y , that maximizes the net profit =(y,T) ,

is obtained by minimizing the total cost function kS(y - x) + G(y,T)

where k&(y - x) 1is a step function as shown below in Figure 2.3.

FIGURE 2.3

Hence, the main interest is to examine the properties of the function

G(y,T) for all values of vy .

Proposition 2.1:

The cost function G(y,T) 1is strictly pointwise convex in

y e {0,1,2, ..., =} , for given T >0 .
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Proof:

Substituting y > 0 in (2.5),

[--]

6(y,T) =cy+ (p+r) ]| (n-y)P (T)
n=y+l
I (n+1,0)
(2.6) +§ { (y-n)J-p—-ﬂ———
n=0
- I (n+ 1,0)
+ p/a Z (n - y)-JL-——————-.
n=y+l p+m

To show that G(y,T) 1is strictly pointwise convex in y , it is
sufficient to show that its second difference (as y takes irteger values

only) is positive. The first difference of G(y,T) 1is

86(y,T) & Gy + 1,T) - G(y,T)
=-(p+r-c)+ (p+r1) % Pn(T)
(2.7) n=0
I (n+1,p) s I (n+ 1,0)
n ¥ g S
Ay p+n -p/a ] p+n )
n=0 n=y+1

The second difference of G(y,T) is

(T)

8%6(y,T) = 8G(y + 1,T) = AG(y,T) = (p + )P

y+1
-1 (y+ 2,0)

i

We have P +l(T) >0 and I (y +2,0) >0 forall y < 10,1,2, ..., o}
4 q
and T > 0 . Hence AZG(y,T) > 0, implying that G(y,T) is strictly

olal

+y+1

pointwise convex in y ¢ {0,1,2, ..., =) , for given T 3 C .
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Proposition 2.2:

The values of the cost function G(y,T)l _ and G(y,T)!
y=0 y=0

" (which

represents the values of G(0,T) reached from left and right of the origin

respectively) are equal.
Proof:
Putting y < 0 inm (2.5),
(2.8) G(y,T) = (p+r + p/a)n(T) - ppT - (p+pT +1r -c)y .

Hence, G(y,T) is linear for all y < 0 with a negative slope since

r > ¢ . Its value at the origin is

(2.9) Gy D]  _ = (p+r +p/a)n(T) - psT .
y=0

From (2.6),

(2.10) G(y,T)] s +r+ l;/u)m(T) - 1;0T .

y=0

By (2.9) and (2.10), the values of G(y,T) at the origin from the left and

from the right are the same.

Propositicn 2.3:

G(y,T) 1is pointwise convex in y , for given T 2 0.

Prook:

From (2.8), G(y,T) {is linear for all y < 0 and hence pointwise
convex in y < 0 . From Proposition 2.1, G(y,T) 1is strictly pointwise
convex for all y ¢ (0,1,2, ..., ®} . Hence, the only remairing thing to be

shown is
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AG(YvT)I + 2 AG(Y’T)l = °
y=0 y=0

From (2.8),

aG(y,T)| _=-(p+pT+r - c) .
y=0

(]

From (2.7), putting y = 0 , we get

86y, L =-(p+tr-c)+p+ )P _(T)

y=0
1_(1,0) s I (n+ 1,0)
L) T
+ = - pla }
a p ) p+n
I (n+1,0)
S
using (2.1) that 'Z Pn(t)dt e , we have

AG(y,T) ]| o™ -(p+r-c)+ (p+ r)Po(T)

y=o
T 1
+ h f Po(t)dt -p f (1r- Po(t)]dt
0 0
(2.11) - -(p+pT+r-c)+ (p+ )P (D)
T
+ (h + p) f P (t)dt > A6y, .
0 y=0

Hence, G(y,T) is pointwise convex throughout in y for all T > 0.

2.10 Critical Order Level

Let yo(T) denote the critical order level for given T minimizing
the cost function G(y,T) . Since G(y,T) is linear with negative slope
for y 0, it is {mmediate that the global minimum of G(y,T) cannct occur

for y < 0. Since G(y,T) 1is strictly pointwise convex for y 1in non-




|
I

R

negative real line, yo(T) is unique., 1If the slope (first difference) of
+
G(y,T) at y =0 is positive, then the minimum of G(y,T) occurs at

y =0 . 1f, on the other hand, AC(y,T) at vy 0+ is nonpositive, then

yo(T) > 0 . Hence, it is necessary to consider the sign of AG(y,T) at
y = 0+ . Let

a(1) = a6y, .
y=0

From (2.11)

T
a(T) = -(p + r + ;T -c) + (p + r)Po(T) + (h + ;) Jf Po(t)dt :
0

and since Po(t) = e’xt , it follows that

-~

(2.12) a(T) = =(p + ¢ + pT - ¢) + —*‘-—}-—2+ (p iy -h——‘;—ﬂ)po(r)

Thus, if a(T) > 0 for given T , then yo(T) 2 0. Otherwise, yO(T) >0
for a(T) < 0 . As the review period T tends to zero, a(T) tends to a
positive value ¢ . Also, a(T) tends asymptotically to

-(p+r - c) +-!L%;2 - pT for T - = , which is negative and remains so

for sufficiently large values of T .

Proposition 2.4:

There exists a unique and finite T° > 0 such that a(TO) =0 ond

a(T) Z 0 for T : To =

Proof:

From (2.12),
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~

a'(T) = dgl@ - [h;P - (p + r)]APo(T) - p

and

PN

a'' (1) = —[—h—‘;—ﬂ - (p+ r)] \Zp_(T)

Consider the two cases where

@ 22< G+

-~

Lo+

(b) =7+ : (p+r) .

Case Sa}:

-

+
Since lLirJl < (p+r), a(T) is strictly negative and a(T) 1is a
convex decreasing function in T . Hence, there exists a unique To such

that
> <
a(T) = 0 for T = To .

Case gbg:

Since lL%FJ! > (p+r), a'"(T) is negative. Hénce, a(T) 1s strictly
concave. Thus, a'(T) decreases as T increases and becomes negative
after some T and stays negative thereafter. Hence, there exists a unique
and finite To where a(To) = 0 and a(T) : 0 for T z To .

From Proposition 2.4, it follows immediately that

n
o
A
-3
A
-3

YO(T) for all 0 ¢

(2.13)
>0 for all T

LA
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For T > To , the critical order level (integer) yo(T) is sought such that
AG(yO(T) = ;T % 0
(2.14)
>0 .

8G(y, (1),T)

A plot of the function G(y,T) with respect to y , for a given T , is

shown in Figure 2.4.

2.11 Optimal Order Level

Given an initial order level x , if the order level is yo(T) s
(assuming yo(T) > x), then the total cost of ordering and operating at
level yo(T) is k + G(yo(T),T) . Instead, if the order level remains at
X , the cost is G(x,T) . Hence, the optimal policy would be to order up to
yo(T) if and only if, G(x,T) > k + G(yo(T),T) . Otherwise, no additional

stock is ordered. Compute a level &(T) <« yO(T) , such that
(2.15) G(s(T),T) = k + G(yo(T),T)

Note that s(T) may be positive or negative for given T .

*
Hence, the optimal order level, denoted by y (T) , will be

X if x > s(T)

*x
(2.16) y (T) =

yo(T) if x < s(T)

Denoting yo(T) by S , such an order policy is known as an (s - S) policy,
since the order level is S if the inventory level is below s ; otherwise,

it is optimal to remain at the level «x .

2.12 Algorithm to Find the Oprimal Order Policv

For a given review period T , the optimal order level is found from

A At A it it TS
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yo(T) by using (2.15) and (2.16). Hence, the main interest is to have an
algorithm to find yo(T) s for those periods T which are greater than or
equal to '1‘o , since yo(T) is zero for all values of T which are less

than To . From (2.14), an integer yo(T) is sought such that

86(y (1) = 1,1) £ 0

AG(yo(T),T) >0.

Assume there are tw ' nmounegative levels ¥y and yz(y2 > y.) such that

1

AG(yl,T) $ 0 and AG(yz,T) >0 .

Note that is the critical order level for given T , if Yo = Y1 +1.

Y2
At the start of the algorithm the interval [yl,yz] will be much larger than
unity. The aim is to reduce the interval length such that ultimately
[y2 - y1] equals unity. For this purpose, the well-known bisection

procedure may be used. Later a procedure for finding the initial values of

¥y and Yy will »se given,

Bisection Procedure:

-
(i1) Calculate AG(ym,T) using (2.7).

(1) Compute the median, Yy =

i1) q 3) - i =
(Lii) If AG(ym,T) > 0, then set Y ® ¥ = Otherwise, set y; =Yg

Now we have a new and shorter interval [yl,y2]

(iv) If the length of the interval (y2 - yl) is unity, then set

Y, = yo(T) . Otherwise, go back to Step (i).

Computation of the Initial Values of ¥y and Yy ¢

Since T > T° , we know from Theorem 2.4, that AG(y,T)' = 0.
y=0
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Hence, we set y; = 0 . Referring to équation (2.7), it is possible to
find an M , with the help of the incomplete Beta function tables [11], such
that I M+ 1,0) > 0 . In which case, AG(M,T) > 0 as required. For
example? for p =2, 1.3 +0 as M~> 8 ; 1.8 -+ 0 as M-+ 50 . Hence, we

set Yy = M.

2.13 Properties of the Cricical Order Level

It will be of interest and use (refer to Chapter 3) if we know the
properties of yo(T) as the review period varies in the nonnegative real
line. The following properties of yo(T) with respect to T will be proved

with the help of a few propositions:

(1) yo(T) is nondecreasing in T e [0,=) .
(i1) )O(“} is a step function of T e [0,~)

(1ii) yo(T) is bounded above as T » = .,

Define a function FN(T) such that

N N I (n+1,0)
v h;‘ a

F(T) = (p+1) ) PAT) += )

N n=0 " % n=0 p+u

(2,17)
w I.(n+1,0)
. < . _ .
-pla | for all N = 0,1,2; ..c
n=N+1 pt+n

Note that FN(T) equals AG(N,T) + (p + r - ¢c) . From (2.14), N 1is the

critical orcer level if and only if

"
Py
-3
N’
A

=(p+r-c)

(2.18)

v

FN(T) (p+r -2¢)

Hence, for a given T , an integer N 1is sought such that FV(T) is above
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the "(p +r - ¢) 1ine+" and FN_l(T) is just below the "(p + r - ¢)

line."

Proposition 2.5:

FN+1(T) is greater than FN(T) for all T > 0 and for all

N=0,1,2, ... .
Proof:
It is sufficient to show that the first difierence of FN(T) is

positive. Calculate

"

AFN(T) FN+1(T) - FN(T)

&y LGB SF 12,p)

h + p q
(1) + ( a ) o+ N+ 1

(p + 0P,

>0 for all T > 0.

Proposition 2.5 shows that (T) 1is unique for every T and it is a
Yo B

step function of T . The next thing to show is the existence of finite

upper bound to yo(T) . For this, the derivative of FN(T)

involves the derivatives of Pn(T) and I (n + 1,0) Now, from (l.10},

q

d _4d |fo+n-1}, -aTo,,  -2lin
37 (Pa(D] =37 [( a )(e ) (1 -e ™) ]

— e -] B 1 =
(¢ + n l)paPn_l(T) APn(T) for all n =0,1,2,

P (D
(2.19)

Note:

s , q 81-e% and p+3

ne-
—

ne>

P o, 5

"In a graph of FV(T) against T, "(p +r - c¢) 1line" is the line drawn

parallel to T-axis (abscissa) at a height of (p + r - c) .

is needed which

—
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From (2.1),

Hence, we can write

dT

N
(2.20) =(+r) ] [(+n-1)paP 1(T) = AP (T)]
n=0 Lk n

-~ N -
p) | P (T) -p for all N> 1.
n=0

+ (h

+

To treat the case N = 0 separately, it has been omitted in (2.20). From

(2.17), putting N =0 and simplifying,

(2.21)  F (D = T + (p + r)P_(T) + ﬁ—f—ﬂ [1-P_ (D]

(2.22) FICT) = -p = D\p + 1) = (h+ PP (T) .

Limiting Values

Next is to examine the limiting values of FN(T) and F&(T) for all

N=0,1,2, ... as T+0 and T » » ,

i T-+0
FN(T) - (p+r) for all N = 0,1,2, ...
(2.23) Fo(T) » =[A(p + 1) - h]
Y -+ N> .
FN(T) h for N> 1




46

(ii) As T » = ;

FN(T) + -~ for all finite N = 0,1,2,
and for p >0
F&(T) -+ -p for all finite N = 0,1,2, ...

The following proposition characterizes the behavior of FN(T) and

F&(T) for infimitely large N .

Proposition 2.6:

The critical order level is bounded above as the review period T » « ,

Proof:

From (2.20), as N tends to = ,

M = @40 I L6 +n- DR, (D = a7, (M]+ p) - p

-(p+r)§a[p+'9:a:|—)\(p+r)+h=h for all T > 0 .
P
Hence, for infinitely large N , FN(T) is linear with positive slope, and
from (2.23) FN(T) > (p+r-c) for all values of T > 0 and for N
greater than some bounded integer. Hence, condition (2.18) cannot be
satisfied by an infinitely large N which implies that yo(T) is finite
for all values of T .

To show the most important and difficult property that yo(T) is a
nondecreasing function of T , it has to be proved that FN(T) crosses the
"(p+r - c) line" at most once for all finite N . Through the following

proposition, a much stronger result is proved.
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Proposition 2.7:
F&'(T) can have at most one change in sign in the range T ¢ [0,®)
for all finite N = 0,1,2, ... .
Proof:
Consider first N > 1 . Rewrite (2.20) as
N -
FI(D = (p+1) ) [(p+n-1)paP (7]
N & n-1
n=1
H N -
-[A(p+ 1) - (h+p)] } PAT) - p for all N> 1.
n=0
-aT

Introducing a new variable u = qg=1-e , write F&(T) as a function

of "u'" alone. Note as T varies in the range [0,®) , u varies in the
half open interval [0,1) and the transformations from u to T and vice
versa are one to one, Hence, Pn(T) reduces to

. o n . _T(+n)
P (W) =c (I-uu where c =T Tr=""T;5

and F&(T) is transformed to

N
Fy(u) = ja(p + 1) Y ot - ible, (0= s Tiat
n=1
- N I 2
-G+t -+ ] ] e @-wfiy-
n=0 " ’

Taking the term (1 - u)° outside the curly brackets and noting that

(p + n - 1)cn-l =nc_,
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o’ Bt n hed n
Felw) = (1 - v 'la(P +1)p Z cu +alp+r) ] ne _u
n=0 n=0
N n - N o
-a(p + 1) Z ncu - [A(p +r) - (h + p)] z c un} -p
n=0 " n=0 "

cancelling the like terms, this simplifies to

~

. N
F&(u) = (1 - v+ op) I ¢ u’ - (A +aN)(p + r)cNuN} -p
(2.24) n=0 "

for all N 2 I

For a check note that

Fy(0) = h and FL(1) = -p .
Since
(2.25) Fp' (D) = By () ﬁ% = B (wall - v,

a>0 and (1 - u) >0 for all u ¢ {0,1) , the sign of F&'(T) is the

same as that of F&'(u) . From (2.24),

" b, n-1 N-1
F&'(u) = (1-uwlm+ p) Z nc_u - (A + aN)(p + r)Nc u ]
el n N

R N
- p(1 - u)o-l[(h + p) nZO cnun - (A +aN)(p + r)cNuN] .

Taking (1 - u)a.l as a common factor,
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R N
F''(u) = (1 - u)f 1;[;h + p) 2 (b +n -~ 1c un_l(l = ui
N n-1
n=]l
N-1
- EA + aN)(p + r)NcNu (1 - uﬂ
2 N n N
- lo(h + p) Z cu |+ [;(A + aN)(p + r)c u ]
n N
n=0
i . [N-1 .-
= (1-uw)"{n+ p)l I (+n)ecu - ] (p+n-1e u”
n n-1
n=0 n=1
N-1 N
- (A +aN)(p + r)NcNu + (A +aN)(p + r)NcNu
il o n N
- p(h + p) Z cu +p(k +aN)(p + r)c,u .
n N
n=0
using the fact that (p + n - l)cn—l = nc and after cancellation of like
terms,

F&'(u) = (1 - u)p-l{-(h + ;)NcNuN - (A +aN)(p + r)I\Jt‘_Nu]’q-l

+ O+ aN)(p + r)NcNuN - olh % p)CNuN + 00 +aN)(p + r)cNuN: )

Hence,

u)p-luN—l

Fa'(w) = cy(1 - (LG +aN)(p + 1) = (h+ )N + p)u

(2.26) ¥

- (A + aN)(p + r)N} for all N > 1.

From (2.26), the sign of F&'(u) or equivalently the sign of F&'(T)
depends only on that of the terms within the curly brackets, since

o-1 N-1 - .
(1 - u) » Cy s U are all positive for u ¢ [0,1) . The sign of the

terms within curly brackets in (2.26), depends on the values of the

parameters and there are only two possible cases:




S0
(1)
(A +aN)(p+ 1) > (h+p).
(True in practical cases.) In this case, the terms within the curly
brackets can have at most one change in sign as they are linear in u .
Hence, F&'(T) can have at most one change in sign in the range
T e [0,x) .
(11)

(C+aN)(p+1) < (h4p),

In this case, F&'(u) < 0 for all ue (0,1) > F&'(T) < 0 for all
T € (0,~) . Hence, F&'(T) does not have any change in sign in the

range T ¢ [0,%) and for all N > 1,

Proposition 2.7 is proved for all N > 1 . For the case when N =10,

from (2.22),
(2.27) FIUD = (A + 1) = (h+ )] (D) .

This implies Fé'(T) is either positive or nonpositive depending upon
whether X(p + r) - (h + ;) >0 or A(p+r) - (h+ ;) < 0 respectively.
Hence, Fé'(T) cannot have any change in sign.

There are three important corollaries which follow from Proposition 2.7

which ultimately prove that yo(T) is a nondecreasing function of T .

Corollary 1:

(a) For values of N >1, FN(T) is either strictly concave throughout
or initially strictly concave and then remains strictly convex in

T in the range [0,») .
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(b) FO(T) is either strictly concave throughout or strictly convex

throughout in T e [0,») .

Proof:

Again consider the two cases relative to the magnitude of the

parameters.
(1)

A+aoN)(p+1r) > (h + ;) 1

By (2.27), F;'(T) > 0 . Hence, Fo(T) is strictly convex in T . By
Proposition 2.7, F&'(T) can have at most one change in sign for all
N>1. From (2.26), note that F&'(T) is initially negative. Hence,
FN(T) is either strictly concave throughout or strictly concave at

first and then strictly convex throughout as T ranges [0,) .

(11)

(O +a)p+1) < (h+p) .

By (2.27), Fé'(T) < 0. By (2.26), F&'(T) < 0. Hence, FN(T) is

strictly concave in T ¢ [0,») for N = 0,1,2, ... .

Corollary 2:

For all values of N ¢ {0,1,2, ...} , FN(T) crosses the

"p+r - c line" at most once and from above.

Proof:

Since FN(O) =p+r forall N =0,1,2, ..., FN(T) starts from above
the "(p+ r - ¢) 1line." Also, F&(O) = h for all N=1,2, ,.. and

F&(w) = -p for finite N > 0 . Hence, from Proposition 2.7 and Corollary 1,




it is clear that once F&(T) becomes negative, it stays negative thereafter.
Hence, Corollary 2 is true, For those N which are greater than some
bounded integer, FN(T) increascs continuously and hence will never cross

b

the "p 4 r - ¢ line.'

Corollary 3:

The solutions TO’Tl’ very T (where N is the limiting value of
N-1
yo(T)) obtainod by equating FV(T) =p+r-c for N=0,1,2, ..., (N-1)

respectively are unique and are strictly increasing.

Proof:

Using (2.18) and Corollary 2 and the fact that N 1is the limiting value
of yo(T) , it is immediate that FN(T) crosses the "(p+ r - c¢) line"

only once for N\ = 0,1,2, ..., (N-1) . Hence, the solutions

TO’Tl’ evey T are unique, By Proposition 2.5, it is immediate that
- N-1

T, < T, <« T, < ... <T 5

0 1 2 S-1

Example:
Figure 2,5 illustrates the shape of FN(T) with respect to T ¢ [0,») ,
for the case when (A + oN)(p + r) > (h+ p) , for values of

M= 0,1,2, ..., 6 .

Proposition 2.8:

The critical order level is a nondecreasing step function of the review
pericd, continuovs from the right with finite saltus at points

oo is 2 B e ST .
0’1 S-1

Proof:

From Corollary 2 and Proposition 2.5, it follows for a given T =T ,




FH{T}

Slope "h"
F(:-(T}
&
(ptr) 4
&
-
¥
2
o
-
?
"(p+r-c) line"
|
|
|
|
k |
Tﬂ

| Graph of FN(T\ Vs T when
¥

(A + aN)(p + 1) > (h + p)

FIGURE 2.5
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yo(T) «0
yo(T) .1
y,(T) = N -1
y,(T) = N

Example:

example given in Figure 2.5.

yo(T)

6

Corollary 3 and Equation (2.18),

for

for

for

for

Thus,

0 J T« To

T, <T< 7T
-

0 1

Figure (2.6) illustrates the plot of yo(T)

against

that 4 the critical order level (s yO(T) , then for all T»>T,
condition (2.1H) can ouly be satisfied by an N > yo(T) . Hence,

yo(T) 2 yo(T) for all T > T ., The vout of the proposition follows {rom

T for the

FIGURE 2.6
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CHAPTER 3

0 SINCLE PERIOD MODEL PUR SEASONAL OR STYLE GOODS

3.0 Introduction

As discusscd in Section l.11, for the casec of scasonal or stylc goods,
either a fixed period-length policy or an optimal period-lcngth policy
may be followed. In the formcr case, an optimal order policy is sought by
fixing the review period institutionally, while in the latter case an
optimal order policy as well as an optimal review period are sought which
leads to an optimization problem with two variables. The optimization is
carried out in two stages by first finding the optimal ordering policy as a

. function of the length of the review period and then selecting an optimal ’

review period. Thus, an optimal solution for both fixed and optimal period-
length policies are given. Only a single period problem is solved for
seasonal goods since in general the scason is not longer than a year.

Here again two situations may arise from demands which occur when the

inventory is zero:

(1) The demand is not filled, i.e., it is lost. The cost of losing
thegse demands may be estimated by the stock-up cost parameters
p(> 0) and p(> 0) as explained in Section 1.15. If the cost
of '"lost sales" 1is ignored, then both p and ; will be zero.

(11) The demand is back ordered and supplied at the end of the season.

In general, it is not practical to follow this policy for

seasonal goods.

‘ 3.1 Optimal Order Level for a Given Review Pariod

Confining the analysis to the case when "lost sales" policy is followed,

it is immediate that all the results of Chapter 2 hold by marking the initial




order level (x) zero, Thus the critical order lovel yo(T) satisfies,

AG(y (T) = 1,T) ¢ O

86(yy(1),T) > 0 :

*
where AG(y,T) 1is given by (2.7). The optimum order level y (T) {is,

¥,(T) 1f k+ Gy (T),T) < G(0,T)
[ ]
y (.) =

0 otherwisc,

Since a single period problem is solved for seasonal goods, y*(T) equals
zero implies no business is done. Hence, to be in business, a positive
inventory level must be maintained at the beginning. ror this to be true,
the condition k + G(yo(T),T) < G(0,T) must be satisfied. Proposition 3.7
(refer to Section 3.5) proves that there exists a lower bound

T£(> To and finite) on the review period T , above which y*(T) is

yo(T) (> 1) . Thus, only those values of T which are greater than T,

will be considered for finding an optimal review period.

3.2 Order Level Optimized Net Revenue Function

The order level optimized net revenue function is defined to be (see

(2.4))

n(m £ a(y (0,
(3.1) \

= rm(T) - k - G(yo(T),T) for all T ¢ [To,w)

and (see (2.5))
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Gy _(T),T) = cy (T) + (p + r) (n=y (D]P (T)
o'’ 0 n-y°§1)+l [ n
Y, 1.(n+ 1,0)
3.2) 4':':' ):0 lyo(T) - n) "q';';—n——
n.
& e 1 (n+ 1,0)
+2 ) n -y, (D] -9',-;7-— .

s ney, (T)+1

From (3.1) and (3.2), it is observed that the order level optimized net
revenue is a function of the review period alone. Hence, an optimal revicw
period can be sought by maximizing n(T) with respect to T . Recall the
fact (rroposition 2.8) that yo(T) is a step function of T , having junps
at points TO’TI' s Tﬁ-l where at time TN : yo(T) jumps from a value
N toavlue N+ 1, being continuous from the right and X is the
limiting value of yo(T) 5

Since the expressions for = (T) involves yo(T) , it will be
interesting to see whether n(T) has also jumps at TO’TI’ eeey T_ 0 It

N-1
turns out that =(T) {s continuous for all values of T .

Proposition 3.1:

The order level optimized net revenue function is a continuous function

of the review period.

Proof:

From Proposition 2.8, it follows that yo(T) is constant during the
intervals [TO'TI)’[Tl'TZ)’ veey |T_ T ), T_ ,w) . Denote by nN(T) 5
N-2 N-1 N-1

the value of the function n(T) during the interval [TN_l,TN) where yo(T)

is equal to N . With the notation T_= >~ , N varies from 1,2, ..., N,
N

Hence,




L1

l.(T) s rm(T) - k - G(N,T) for all T"_l < T« T“
(3.3)

and N»= 1,2, ..., N
vhere
CUT) =N+ (p+r) [ (n-NP (T
nsN+1

(3.4)

I (n+1,0) - I (n+1,0)

It is clear from (3.3) and (3.4) that nN(T) is continuous in the interval

TN-I <Tc«< TN for all N=1,2, ..., N. The only thing remains is to show

that the jump at point TN is zero. Denote

Aﬂ"(TN) . "N+1(TN) - ﬂN(TN) c

By (3.3), the jump at T = T is

N ]
Ay (T) = <Gy, (T + G (Ty)

= -AGN(TN) .

In Section 2,13 (Corollary 3), it was shown that TN satisfies AGN(TN) =0,

Hence,

for all N = 1,2, ..., (N-1) .

]
o

AnN(TN) =

3.3 Limiting Values of n(T)

The next question would be to examine the limiting values of n(T) as

T tends to zero and infinity.
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1) T ~0:

When the reviev period tends to zero, yo(‘r) - 0 by (2.13). Now,

un(1 )o 1

I(n+1,0) =

q -1

}
0
1
f )o du
0

where

a-l'e-aro

As T+0,q+0. Hence, I_(n+1,0) *0. Also, m(T) » 0 and

q
rn(r) +0 forall n> 1. Hence, from (3.1),

lim n(T) = 0 ,
T+0

(1) T >+ = :

Now, ag T + » , yo(T) + N which is the finite upper bound for yo(T) 3

i Also, as 'r+o,<';-»1. Hence,

ll I-(n+l,p)"10
q

| Also, Pn('r) + 0 for all n>0 and m(T) » = . Now,

1im #(T) = lim [rm(T) - k - G(y GT) +T)] =

T-+oe T

e ey et

From (3.2),

PSS

=
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Gy (T),T) = cy (T) + (p + 1)

+'§ )

[n

=y, (T)+1

(n =~y (T))P_(T)
n-y°§1)+l ° i

- yo(T)l

Changing the order of summation of the terms containing (p + r) , we

get,

Gly (T),T) = ey (M) + (p+ 1) [ [n-y (DIP (T)

n=0
¥, (T
-Gp+r) [ [n-y (DI (D)
n=0
h yo(T) I.(n + 1,p)
5 ) [y, (T) - n] "g-p—;_—n—-
n=0
oy = I.(n + 1,0)
+2 [ -y (D] o
] n-yo(T)+l o p+n

[}
Using the fact that ) Pn(T) =1 and | nPn(T) = m(T) , we get,

(3.5)

n=0

n=0

G(yo('l‘).’l‘) = cyo(T) + (p + r)[m(T) - yo(T)]

yo(T)
+(+r) } [y (T) - nlP_(T)
n=0
. ¥o(D I.(an + 1,0)
+3 nzo [y, (T) - n] __g_______p e
) = I(Gr * L,
+T L In-y M)

2 n-yo(T)+1
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From (3.5), as T ~+» ,
ey (1) + e

(p + r)m(T) - yo(T)l - -

y, (T) I (n+1,0) =
By mem 2 ] (-n) o
e =0 Yo p+n S ne0 o p+n
and positive
R e I (n+1lp) .
2 [n-y(T)]—s————*z (n - N) L.
n=y %T)"'l ptn - n-t§+1 o+

Hence, 1lim G(yo(T),T)] = ® , Thus, lim 7(T) = ® = » yhich is an

o0 T+o0
indeterminate form. L'Hospital's Rule may be used to find the limit. Since
the limiting value of n(T) is not in the standard form =/ or 0/0 for
direct application of L'Hospital's Rule, transform the expression in such a
way so as to get /= form.

Multiply the expression (3.1) throughout by P = e-m'r to obtain

n( =L (203 - 5k - Fo(y, (D,D] .
P

This expression can be rewritten, using (3.5), as

(1) =L {-ppq - kp

P
g yo(T)
+p{p+r -y (M- G+r) ] [y (T -nalp (D
n=0
BA I(n+ 1,0)
e 11} et A
- Py ngo [y (D) - n] =——
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> & I (n+1,p)
P y n -y (D] ¥l L SR T
o n=y°zT)+l o S p+n {

1/p j

=2 (@ +Q +0Qy+ Q)
P
where

Q, = -prq - kp

¥, (D)
Q=pllo+r-cy (M -G+r) [ [y (D -nalp (D)
n=0
[ yo(T) I (n+1,p)
. | ol Ak
Ry = ~pi= nZO [9.00) ~n] ~Secie
A 5 I(n+1,0)
S [a -y (1)] e
" n-yo(T)+l " e
Qa "o Py
1/p
I_(n + 1,0)
' S o Fegs SR i P e @
As T""’.yo(T) N, p+n p+n’Ql p09Q2 0)Q3 0

and Ql‘ + o/w , Sc apply L'Hospital's Rule for Qa . Hence,

A -t
-p ) [n -y (T)]P (T)
n=, (1) )+1 = B
lim [Q,] = lim = ~ o
T To a/p
Changing the order of summation,
¥, (D)
-pm(T) + py (T) = p § [y (T) - n]P_(T)
o D o n
lim [Ql‘] = lim

T T a/p
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P B A ) )
" lin)- el I L 1™ = nle (D - py, (M
-sa0 n=

- -pp/a "

Hence, the numerator of #(T) , which is nothing but (Q1 + Q2 + Q3 + Qb)

tends to a constant, =(p + p/a)p , while the denominator p tends to zero.

Hence, lim n(T) = -~ ,
Te

3,4 Derivative of n(T)

In expressions (3.1) and (3.2), n(T) involves the step function yo(T)

which does not have left-hand derivatives at points TO’TI’ ceey T_ &
N-1
Hence, fixing the value of yo(T) = N where it is constant for all

T T« TN » 1ts derivative may be examined with respect to

N-1

TelT, ,,T,) . From (3.3) and (3.4),

N-1""N
nN(T) = m(T) - k

-eN-(p+r) ] (n-NE (D)

n=N+1
N I (n+1,0) . I (n+1,0)
-%nzo (N-n)'-q'm—-ﬁn-g+l (n-N)—gp—rn——
for all Ty, ST < T, and for all N = 1,2, ..., N .

(D = 5 (M1 .

Using (2.1) and (2.19),

et
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Ar : -
(T == - (p+r) (n - N)[(o +n - 1)paP _,(T) = AP (T
N P n-é+l Pn- n (D]

N 3
-h ] - (M-p ] (a-NP (T
n=0 n=N+1

change the order of summation for p term to obtain,

. N -
=2 hep) §o-mE M+l - a(D)]
P n=0 2

&

- (p+r) (n = N)I(p+n=1)paP_ . (T) = AP_(T)]
n-£+1 P n-1 L

(3.6)

T<T, and for all N= 1,2, ..., N,

for all TN-l < N

Proposition 3.2:

For all N=1,2, ..., N, the function w&(T) is continuous in
Te [TN-I’TN) and has a positive jump at the bou.dary TN where yo(T)

changes its value from N to (N + 1) .

Proof :

From (3.6), it is obvious that w&(T) is continuous in the interior.

The only thing is to prove the jump at T = TN is positive.
e

] P ' = [}
AwN(TN) jump of the derivative nN(T) at T TN <

- "ﬁ+1(TN) - n&(TN) .

From (3.6), the above will be equal to
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) . N1 N
ani(Ty) = p = (h + p) nZO N+ 1= n)P (T)) - ngo (N - )P (Ty)

- (p+ r)[n=£+2 (n-N-1]( +n- l)ﬁaPn_l(TN) = ARy (T)]

- n=1§+1 (n - N)[(p + 0 - LpoP _ (Ty) - xpn(TN)]] .

Expanding the terms under summation and after cancellation,

N

ani(T) =p - (h+p) ] P (T
n=0
N -
- (p+r) nZO [ +n - 1paP__ (T) = WP (T)] .

The above expression and (2.20) are identical except for a sign change.

Hence, Aﬂ&(TN) = —F&(TN) . From Corollaries 2 and 3, in Chapter 2,
(3.7) F'(T) <0 for all T>T
N = "N

since FN(T) crosses the "(p + r - ¢) line" at TN and continues to
(strictly) decrease. Hence, An&(TN) >0.
It will be easy to investigate the behavior of w&(T) if there are

finite limits in the summation. Hence, by changing the infinite iimits in

P

the terms corresponding to "(p + r)" and "p'" 1in expression (3.6) to

finite limits, (3.6) can be rewritten as,

N

W@ =2E - (h+p) [ [N-nlP (D) + pN - m(D]
p n=0

- N N
+A(p + 1) [(—‘1_9- - ] o (T)) - N(l - . P (T))J
P a=0 a=0

- alp + r>s[n_r§+1 (@ - N)[oP, (D) + (n - l)Pn—l(T”]

Let

i i e e
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-4

L(T) = -a(p + r)p‘»[nﬂ%1 (n = MR _)(D) + (n - 1>Pn_1m1]

n=1 n=1

N N
- alp + r)S[N(o -0 ] Pn_l(T)) + N(m(T) -1 (- 1)Pn_1(T))]

- a(p + r)E[nngHl zo[(n - P (T + P _, (D]

+ln-D%+ (- 1)]Pn_1(T)§] .

Once again changing the infinite limits in the summation to finite limits

and using the fact that
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